
OpenGI Programming Guide

Version 2.1

Christian Rau <rauy@users.sourceforge.net>

Copyright (C) 2009-2011 Christian Rau.
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled �GNU Free
Documentation License�.

mailto:rauy@users.sourceforge.net

Contents

List of Tables iii

List of Figures iv

1. Introduction 1
1.1. OpenGI Overview . 1
1.2. General API Design . 2

2. Basic Functionality 4
2.1. Context Management . 4
2.2. State Management . 4
2.3. Error Handling . 5
2.4. Multithreading . 5

3. Triangular Meshes 7
3.1. Basic Mesh Management . 7
3.2. Vertex Attributes . 7
3.3. Mesh Creation . 8
3.4. Vertex Subsets . 10
3.5. Mesh Retrieval . 11

4. Mesh Cutting 13
4.1. Patch Handling . 13
4.2. Cutting Algorithms . 13

5. Parameterization 15
5.1. General Parameterization Issues . 15
5.2. Parameterization Algorithms . 16
5.3. Parameterization Stretch . 19
5.4. Callback Functions . 20

6. Images and Sampling 21
6.1. Image Management . 21
6.2. Sampling . 23

7. OpenGL Utility Functions 26
7.1. General OpenGL Issues . 26
7.2. Rendering Meshes . 26

i

Contents

7.3. Rendering Geometry Images . 27

A. Programming Tips 31
A.1. Precision Issues . 31
A.2. Performance Tips . 32

B. Usage Example 33

C. Porting from Version 1.X 36

D. State Variables 37

E. GNU Free Documentation License 40

Bibliography 48

Function Index 49

Enumeration Index 51

ii

List of Tables

2.1. Possible errors and their meaning . 5

3.1. Special vertex attribute semantics . 8
3.2. Boolean mesh properties . 12
3.3. Integer mesh properties . 12
3.4. Floating point mesh properties . 12
3.5. Boolean and integer per-attribute mesh properties 12

5.1. Metrics for measuring parameterization stretch 19

6.1. Image types . 22
6.2. Image properties . 23

7.1. OpenGL render semantics for attribute channels 27

D.1. Boolean state variables . 37
D.2. Floating point state variables . 37
D.3. Integer state variables . 38
D.4. Boolean per-attribute state variables . 39
D.5. Integer per-attribute state variables . 39
D.6. Floating point per-attribute state variables 39

iii

List of Figures

1.1. OpenGI data�ow . 2

4.1. Catmull-Clark subdivision . 14

5.1. Parameterization Algorithms . 18

7.1. Regular vs. geometry shader based rendering 30

iv

1. Introduction

1.1. OpenGI Overview

OpenGI is an open source library written in C for parameterizing triangular meshes and
creating geometry images from this parameterization. As you are interested in OpenGI
and reading this guide it is assumed that you have a basic understanding of geometry
images. If not, the original paper by Gu et al.[GGH02] is a good place to start at. Some
knowledge in the �eld of parameterization could be useful but is not neccessary.
The features of OpenGI include:

• Platform-independent and Open Source

• Easy to learn, OpenGL-like syntax and programming paradigms

• Working on 2-manifolds of arbitrary genus with a variable number of boundaries

• Implementing various parameterization algorithms, e.g. Mean Value Coordinates,
Stretch Minimization or the original GIM algorithm

• Supporting multi-chart patchi�cations

• Easy and hardware accelerated creation of Geometry Images

• Creation of images not only for geometry but various generic attributes

• Detailed control and feedback of the whole parameterization and Geometry Image
creation process

• Tight integration with OpenGL for easy and e�cient data sharing

Figure 1.1 shows the typical OpenGI data�ow from mesh to geometry image with
ellipses representing client data and rectangles representing major OpenGI operations.
First you create an OpenGI mesh object from your mesh data. After cutting and pa-
rameterizing this mesh you can sample its attributes into OpenGI image objects, which
operate on your client data. This data can then be used as geometry images to do what-
ever you want, including letting OpenGI render it with OpenGL. The remaining chapters
of this guide will follow the major steps of this usual data�ow. But the dashed lines in
�gure 1.1 show that this control �ow is everything else than strict. You can use OpenGI
for parameterization only and then extract the parameterized mesh to use it for texture
mapping or other techniques involving parameter coordinates. Or you can specify your
own mesh cut and maybe an existing parameterization on this cut and use OpenGI only
for sampling.

1

1. Introduction

Figure 1.1.: OpenGI data�ow

1.2. General API Design

The command syntax and programming paradigms used in OpenGI are heavily based on
OpenGL. Originally this was chosen to give the developer of the library a clear design
principle, but a useful side e�ect is that people understanding OpenGL, which is quite
likely as we're moving in the �eld of computer graphics, have no problems learning
OpenGI. Actually OpenGL was not only the design guide but is also tightly integrated
into this library making its use within existing graphics software as easy and e�cient
as possible. So if you are �t in OpenGL, you won't need much time to understand the
workings of OpenGI.
Throughout this guide you will �nd types like GIuint, GIfloat, etc. These are only

typedefs of common C datatypes:

typedef unsigned int GIenum

2

1. Introduction

typedef unsigned char GIboolean
typedef unsigned int GIb i t f i e l d
typedef char GIchar
typedef signed char GIbyte
typedef short GIshort
typedef int GIint
typedef int GI s i z e i
typedef unsigned char GIubyte
typedef unsigned short GIushort
typedef unsigned int GIuint
typedef f loat GI f l oa t
typedef double GIdouble
typedef unsigned short GIhal f
typedef void GIvoid

For clear use of the GIboolean datatype OpenGI de�nes the two constants GI_TRUE and
GI_FALSE which just evaluate to 1 and 0.
OpenGI also de�nes some constants for identifying datatypes, e.g. GI_UNSIGNED_-

BYTE or GI_FLOAT. These all evaluate to the same values as the corresponding OpenGL
constants. However, other OpenGI constants that have the same name as OpenGL
constants (but with GI_ instead of GL_) do not have the same value as their OpenGL
counterparts.
Like OpenGL, OpenGI was primarily designed as a state machine. Most of the con�g-

uration parameters for the various functions (set by gi...Parameter) and other settings
are represented as global state variables and modifying them has e�ect on all following
calls to the functions using them. So, when calling a function always be sure in what
state OpenGI currently is. In the appendix you can �nd the default values for all state
variables. Note, that these values can only be changed by you calling the respective
functions and not by any side e�ects of other functions (except variables giving feedback
of the success of an algorithm, like GI_SAMPLED_ATTRIBS).
One of the main design principles of OpenGI was the object model known from

OpenGL's texture or bu�er objects. They are a little decoupling of the global state,
representing all the data, the algorithms work on and modify in distinct objects. They
are created by calling giGen... and deleted by giDelete.... To the user they are repre-
sented by a numeric object handle. There is allways one object bound for a given object
type (or none, represented by the NULL-handle), using giBind..., and all algorithms
working on that object type refer to this bound object. So, to do a bunch of things with
an object you only need to bind it once and call the functions for modifying it without
always passing the object explicitly. The two object types used in OpenGI are triangular
meshes and rectangular images.

3

2. Basic Functionality

2.1. Context Management

The current OpenGI context encapsulates all the OpenGI state of an application. There
can be more than one context in an application but only one can be the active one. By

GIcontext giCreateContext ()

you can create a new context. The function returns the new context and automatically
makes it the active context. To change or query the active context use

void giMakeCurrent (GIcontext context)
GIcontext giGetCurrent () .

Finally you can delete a context and free its resources by calling

void giDestroyContext (GIcontext context)

If the deleted context is the current active context it is unbound automatically. Note
that calling any other OpenGI functions except these when there is no active context
results in unde�ned behaviour, but most likely an access violation.

2.2. State Management

Nearly every value of the current OpenGI state can be queried by one of the functions

void giGetBooleanv (GIenum pname , GIboolean ∗params)
void g iGet Intege rv (GIenum pname , GIint ∗params)
void giGetFloatv (GIenum pname , GIfloat ∗params)

specifying the state to query and the address to store its value at. The possible values
for pname are listed in tables D.1 to D.3 in appendix D. Note that every boolean state
can also be queried with giGetIntegerv and giGetFloatv and every integer state can
be queried with giGetFloatv, but not vice versa.
Certain features of OpenGI can be activated, deactivated and queried with

void giEnable (GIenum pname)
void g iD i s ab l e (GIenum pname)
GIboolean g i I sEnab led (GIenum pname) .

The value of every OpenGI constant can be queried given its name using

GIenum giGetEnumValue (const GIchar ∗name) .

4

2. Basic Functionality

2.3. Error Handling

When calling OpenGI functions there can occur di�erent kinds of errors caused by inap-
propriate use of its functionality. OpenGI only stores the last error it encountered. The
error code of this error can be queried by

GIenum giGetError () .

Table 2.1 shows the possible errors.

error code description

GI_NO_ERROR everything's �ne

GI_INVALID_ENUM constant not accepted by the function

GI_INVALID_OPERATION operation illegal in current state

GI_INVALID_VALUE numeric value out of range

GI_INVALID_ID object with speci�ed id does not exist

GI_INVALID_MESH input mesh is not a connected 2-manifold

GI_INVALID_CUT mesh cut incomplete

GI_NUMERICAL_ERROR numerical stability problem

GI_UNSUPPORTED_OPERATION attempted operation not supported by the system

GI_INVALID_-

PARAMETERIZATION

no parameterization onto the unit square

Table 2.1.: Possible errors and their meaning

When querying the last error it will be reset so that the next call of this function
returns GI_NO_ERROR. For a given error code you can retrieve a descriptive error string
using

const GIchar∗ g iE r r o rS t r i n g (GIenum e r r o r) .

For a better control over the thrown errors you can register a callback function, called
whenever an error occurs with the function

void g iEr ro rCa l lback (GIerrorcb fn , GIvoid ∗data)

where GIerrorcb is just a

typedef void (GICALLBACK ∗GIerrorcb) (GIenum, GIvoid∗)

and data a pointer to custom user data. The callback function is then called with the
error code and the user data as arguments. When no error callback is set, which is the
default, and OpenGI was built with OPENGI_DEBUG_OUTPUT de�ned, a descriptive error
string is written to the console.

2.4. Multithreading

If OpenGI was compiled with multithreading support, some functions may pro�t from
using multiple threads, especially on a multi-core architecture. Multithreading can be en-
abled or disabled by calling giEnable/giDisable with the constant GI_MULTITHREADING.

5

2. Basic Functionality

It is enabled by default but it only takes e�ect if OpenGI was compiled with multithread-
ing support, which is true if it was built either on a Win32 platform or on a platform
containing the pthreads library. Functions that use multiple threads are giParameterize
and giSample with software sampling.
Although it may use mutlithreading internally OpenGI is absolutely not thread-safe.

You should not use OpenGI functions in two or more di�erent threads simultaneously. It
is not enough to just work on di�erent meshes, as the OpenGI context and the current
mesh binding etc. are application-global data. Of course you can use OpenGI in di�erent
threads, but then you should guard the OpenGI calls by critical sections, so that no two
threads are in an OpenGI function at the same time.

6

3. Triangular Meshes

3.1. Basic Mesh Management

The triangular mesh is the central datastructure on which OpenGI operates. Note that
OpenGI only supports 2-manifolds but these can have an arbitrary number of bound-
aries and an arbitrary genus. The mesh should also be connected, meaning it does not
consist of more than one unconnected parts, as such a �multi-mesh� cannot be parameter-
ized. Since version 2.0 of the library a mesh can consist of more than one parameterized
patch. But for now you do not have to worry about patches, as OpenGI's patch seman-
tics are thoroughly explained in chapter 4 and are never needed when the mesh consists
of only one patch.
In the client application meshes are represented by mesh IDs which are actually just

numbers. To create a new mesh object and get its ID you can use the functions

GIuint giGenMesh ()
void giGenMeshes (GIsizei n , GIuint ∗meshes)

returning either one ID or storing n IDs in meshes. With

void giBindMesh (GIuint mesh)

you can then bind this mesh as the active one so that all operations work on this mesh.
OpenGI generates a GI_INVALID_ID error if the mesh with the speci�ed ID does not
exist. To query the currently bound mesh ID use giGetIntegerv with the parameter
GI_MESH_BINDING. To delete one or more meshes and free their resources just call

void giDeleteMesh (GIuint mesh)
void giDeleteMeshes (GIsizei n , const GIuint ∗meshes)

which unbinds the mesh if it was the active one. Note that calling any OpenGI functions
working on meshes will generate a GI_INVALID_OPERATION error if no mesh is bound
(actually mesh 0 is bound).

3.2. Vertex Attributes

Before creating the mesh we have to take a look at OpenGI's attribute system. Since
version 2.0 the attribute system has been made more generic. Each vertex of a triangular
mesh can have a number of indexed generic vertex attributes. These attributes can be
anything from positions to normals or colors or whatever, OpenGI does not care about
their semantics. The maximum number of vertex attribute channels can be queried by
calling giGetIntegerv with GI_MAX_ATTRIBS and is at least 16 at the moment.

7

3. Triangular Meshes

semantic description default

GI_POSITION_ATTRIB vertex position 0

GI_PARAM_ATTRIB parameter coordinates 14

GI_PARAM_STRETCH_ATTRIB parameterization stretch 15

Table 3.1.: Special vertex attribute semantics

Although this attribute system is quite generic there have to be some attributes which
are stored and treated specially and thus have to have a special semantic. These are the
vertex positions, their parameter coordinates and parameterization stretch (more about
this later). This semantic can be established for a given attribute channel by calling

void g iBindAttr ib (GIenum semantic , GIuint a t t r i b)

with semantic being one of the constants from table 3.1 and attrib between 0 and GI_-

MAX_ATTRIBS−1 specifying the attribute channel to use for this semantic. Only one
attribute channel can be bound to a certain semantic at a time and table 3.1 also lists
the initial bindings. It is important to note, that these semantic bindings are only relevant
for mesh creation. When the mesh data is created (see next section) the current semantic
bindings are �xed for the mesh and every function working with attributes will assume
the semantic bindings of the current mesh and not the global ones if di�erent.
Various global per-attribute state can be queried by

void giGetAttr ibbv (GIuint a t t r i b , GIenum pname , GIboolean ∗params)
void g iGetAtt r ib iv (GIuint a t t r i b , GIenum pname , GIint ∗params)
void g iGetAtt r ib fv (GIuint a t t r i b , GIenum pname , GIfloat ∗params)

with the constants from tables D.4 to D.6 for pname (see appendix D).

3.3. Mesh Creation

To create the actual data for a mesh several steps have to be taken. Meshes are cre-
ated from vertex arrays either indexed or non-indexed, just as you would draw them in
OpenGL or whatever 3D-API you like. Note that the only primitive type supported is
a triangle set. Other primitives as quads or triangle strips known to 3D-APIs are not
supported. To set the vertex arrays to use for mesh creation just call

void g iAt t r i bPo in t e r (GIuint a t t r i b , GIint s i z e ,
GIboolean normalized , GIsizei s t r i d e ,
GIfloat ∗ po in t e r)

In this function attrib speci�es the attribute channel, size stands for the number of
components in [1,4] and normalized says if the attribute should be renormalized after
interpolation. The stride argument speci�es the number of values between the start of
two consecutive elements. If the elements are tightly packed (corresponding to stride

equaling size) you may also set stride to 0. Finally pointer is the pointer to a user
controlled array of single precision �oating point values containing the data. As this

8

3. Triangular Meshes

data is not accessed until the actual mesh creation the vertex arrays are global state and
no per mesh state. The current pointer for each array can be obtained by calling

void GetAttr ibPointerv (GIuint a t t r i b , GIfloat ∗∗params) .

After (or before) the data pointers for the neccessary attribute channels are set, they
have to be enabled or disabled with

void giEnableAttr ibArray (GIuint a t t r i b)
void g iDi sab l eAtt r ibArray (GIuint a t t r i b)

Before mesh creation some requirements have to be met. Of course every enabled at-
tribute channel should have a valid data pointer. Moreover the attribute channel bound
to GI_POSITION_ATTRIB always has to be enabled and have at least 3 components, as
every mesh needs at least vertex positions in 3-space. The mesh can also be given an
existing patchi�cation and parameterization by enabling and setting the attribute bound
to GI_PARAM_ATTRIB, but this attribute has to have at least 2 components and has to
meet some additional requirements (see 4 and 5 for more information). The attribute
bound to GI_PARAM_STRETCH_ATTRIB always has to be disabled, as the parameterization
stretch is computed internally and cannot be speci�ed by the user.
Now everything is ready for mesh creation. To create a mesh from the current vertex

attribute arrays, call one of the functions

void giIndexedMesh (GIuint s ta r t , GIuint end ,
GIsizei count , const GIuint ∗ i n d i c e s)

void giNonIndexedMesh (GIint f i r s t , GIsizei count) .

The �rst function creates the mesh by indexing into the arrays with the count indices
in the indices array. The arguments start and end are just hints to keep the memory
consumption of the function low. They should contain the minimal and maximal index
used or can just be set to 0 and vertex_array_size-1 when you do not know the range
of vertices or use the whole array. With the second function you just walk through the
arrays taking every tuple of three consecutive elements as a triangle. Here �rst stands
for the vertex to start at and count is the number of vertices processed. If attempting
to create a non-manifold mesh, e.g. a mesh with edges adjacent to more than two
triangles, vertices belonging to more than one boundary, or mesh parts only connected
by a vertex, a GI_INVALID_MESH error is thrown and the mesh creation fails.
You can also use the function

void giCopyMesh (GIuint mesh)

to create the current mesh as an exact copy of the mesh with the ID speci�ed in mesh.
Note that OpenGI generates a GI_INVALID_ID error if the source mesh does not exist.
There have to be made some remarks on the memory consumption. Due to the rather

complex mesh processing done during parameterization, the mesh datastructure is quite
complex and memory consuming. On 32-bit platforms the mesh can take about 400-600
bytes per vertex and about 700-900 bytes on 64-bit platforms, depending on the number
of di�erent attributes used and their size (usually around 450 or 750). Additionally
the parameterization can create about 250-350 bytes per vertex of temprorary data,

9

3. Triangular Meshes

depending on the algorithm used. So parameterizing a mesh with 1 million vertices
requires you to have about 1 GB of free memory.

3.4. Vertex Subsets

When creating meshes it is sometimes necessary to de�ne some vertices (usually very
few) that have a certain property. Because it would be quite wasteful to do this by a
per vertex �ag this is accomplished by vertex subsets. A vertex subset is an index array
containing the indices of all vertices in the vertex array with a certain property.
The semantics of vertex subsets are nearly like those of attribute arrays. A certain

subset used for mesh creation is set by

void g iVertexSubset (GIenum subset , GIsizei count ,
GIboolean sorted , const GIuint ∗ i n d i c e s)

where indices contains the count indices of the vertices in the subset. The sorted argu-
ment speci�es if the index array is sorted. If the array is sorted or you have the ability
to sort it you should do this, otherwise in every call to gi[Non]IndexedMesh a local copy
of the subset is made and then sorted if activated. To activate a subset for use during
mesh creation just call giEnable with the same parameter used for the subset argument
of giVertexSubset. These arguments can be one of the following constants:

GI_EXACT_MAPPING_SUBSET: During parameterization vertices in this subset
are parameterized to exact texels if they lie on the parameterization boundary, so
their exact value stands in the geometry image. Usually this is not required as
OpenGI takes care of such vertices where it is necessary (at cut intersections). But
if you want to separate a mesh into di�erent patches and you do not want to use
OpenGI's patch functionality, the exact mapping of certain vertices can aid the
stitching of adjacent images.

GI_PARAM_CORNER_SUBSET: vertices in this subset are mapped to the corners
of the parameterization domain if they lie on the parameterization boundary, but
this works only for patches that have exactly four such vertices on their boundary.
This subset is useful if you want to give the mesh an existing patchi�cation (but no
parameterization) and you know it is a quadrilateral patchi�cation, so the patch
intersections are mapped to the image corners and OpenGI only has to parameterize
the interior.

The currently set pointer for a vertex subset can be retrieved by calling

void g iGetPointerv (GIenum pname , GIvoid ∗∗params)

with pname being one of the constants from the above list.
Some remarks on the indices in the subset: If a vertex, that belongs to the subset is

duplicated because of di�erent normals or something like this, you should put all index
synonyms of that vertex into the subset or at least the index that is processed �rst during
mesh creation, which is the smallest for giNonIndexedMesh or the �rst in the index array
for giIndexedMesh.

10

3. Triangular Meshes

3.5. Mesh Retrieval

Every mesh property can be retrieved by one of these functions

void giGetMeshbv (GIenum pname , GIboolean ∗param)
void giGetMeshiv (GIenum pname , GIint ∗param)
void giGetMeshfv (GIenum pname , GIfloat ∗param)

specifying the property to query and the address to store its value at. Tables 3.2 to 3.4
list the properties that can be queried. The last column shows if the respective property
can also be retrieved per patch (see 4 for more information on patches). The per-patch
value may vary from the per-mesh value.
In addition to the global mesh properties there are some per-attribute mesh properties,

which are queried by

void giGetMeshAttribbv (GIuint a t t r i b , GIenum pname , GIboolean ∗params)
void giGetMeshAttr ibiv (GIuint a t t r i b , GIenum pname , GIint ∗params)

given the attribute channel to query the property for. The allowed values for pname are
listed in table 3.5. It makes no di�erence if you call these functions for the whole mesh
or just one patch, the results are the same.
There are two functions to extract the mesh data back to a vertex/index array repre-

sentation. They can also be used to retrieve a single patch's data only. With

void giGetNonIndexedMesh (GIuint ∗vcount)

you can extract the mesh into vertex arrays with three consecutive vertices representing a
triangle. The number of vertices extracted will be stored in vcount. The vertex attributes
are written to the arrays speci�ed by giAttribPointer and only the currently enabled
attributes are extracted (using gi[Enable/Disable]AttribArray). This way only a
subset of the mesh attributes can be extracted. But to prevent errors, the number of
components and bound semantic of every enabled attribute channel has to match the
corresponding per-mesh properties. If a single attribute channel does not match, the
whole extraction fails and a GI_INVALID_OPERATION error is thrown.
To extract the mesh into vertex and index arrays use

void giGetIndexedMesh (GIuint ∗vcount , GIuint ∗ i count , GIuint ∗ i n d i c e s)

with the user allocated array indices which stores the index values. The number of
extracted indices is written into icount. Due to attribute discontinuities the number of
vertices you retrieve depends on the enabled attributes and is determined on the �y and
not nesseccarily equal to the number of vertices you created the mesh from. Because
of this, you may not know the required size of the attribute arrays. To retrieve this
size you can call giGetIndexedMesh with an indices argument of NULL. This will only
compute the number of extracted vertices and indices based on the enabled attribute
channels and will not write any data, but keep in mind, that the attribute speci�cations
(number of components and semantic) still have to match. After this you can allocate
your vertex and index arrays and call giGetIndexedMesh a second time. But you can
also just allocate the arrays to a size of 3×#faces, which will always su�ce.

11

3. Triangular Meshes

constant description patch

GI_HAS_PARAMS mesh has valid parameterization x

GI_HAS_CUT mesh has valid cut x

Table 3.2.: Boolean mesh properties

constant description patch

GI_PATCH_COUNT number of patches

GI_FACE_COUNT number of faces x

GI_EDGE_COUNT number of edges x

GI_VERTEX_COUNT number of vertices x

GI_POSITION_ATTRIB attribute channel used for vertex positions x

GI_PARAM_ATTRIB attribute channel used for parameter coords x

GI_PARAM_STRETCH_ATTRIB attribute channel used for param stretch x

GI_PARAM_STRETCH_METRIC last metric used for computing per vertex
stretches or 0 if no stretches computed

x

GI_PARAM_RESOLUTION resolution of parameter domain or 0 if no pa-
rameterization

x

GI_TOPOLOGICAL_-

SIDEBAND_LENGTH

length of topological sideband

GI_TOPOLOGICAL_SIDEBAND topological sideband data

GI_ACTIVE_PATCH ID of active patch or GI_ALL_PATCHES if none

Table 3.3.: Integer mesh properties

constant description patch

GI_AABB_MIN minimal vertex of axis aligned bounding box

GI_AABB_MAX maximal vertex of axis aligned bounding box

GI_RADIUS radius of bounding sphere around origin

GI_MIN_PARAM_STRETCH minimum per vertex stretch value or 0 if no per
vertex stretch values existing

x

GI_MAX_PARAM_STRETCH maximum per vertex stretch value or 0 if no per
vertex stretch values existing

x

Table 3.4.: Floating point mesh properties

constant description

GI_HAS_ATTRIB mesh has data for this attribute channel

GI_ATTRIB_NORMALIZED attribute should be renormalized after interpolation

GI_ATTRIB_SIZE number of components

GI_ATTRIB_SEMANTIC semantic attribute is bound to or GI_NONE

Table 3.5.: Boolean and integer per-attribute mesh properties

12

4. Mesh Cutting

4.1. Patch Handling

Before the mesh can be parameterized it has to be cut into a topological disk, as a
sphere, for example, cannot be unrolled to the plane. You have to cut it open before
you can fold it into the parameter plane. This cut is then mapped to the boundary of
the parameter domain, in our case the unit square. Since OpenGI 2.0 the cut graph
may contain circles, meaning the mesh can consist of a number of disjoint patches that
can be parameterized and sampled individually. But this is an all or nothing contract.
Either the mesh consists of one patch only and therefore the cut graph is a tree or
the cut graph does not contain any degree-1 nodes (open ends) and consists of a single
connected component, meaning the patches already represent topological disks.
The number of patches a mesh has can be queried by calling giGetMeshiv with GI_-

PATCH_COUNT and the function

void giMeshActivePatch (GIint patch)

can be used to select a patch as the active one, by its 0-based index. After this call
every function working on mesh data (except for the mesh creation and copy) refers to
this patch only. To work on the whole mesh again, call giMeshActivePatch with a
patch argument of GI_ALL_PATCHES. The active patch is a per-mesh state and can be
queried with giGetMeshiv and a pname of GI_ACTIVE_PATCH, which is GI_ALL_PATCHES
by default. If the mesh consists of a single patch only, it makes no di�erence if patch 0
or no patch is selected. Therefore, as long as no multi-chart patchi�cation is needed, you
do not have to bother with these patch semantics.
To give the mesh an existing cut or patchi�cation you can either supply the parameter

coordinates on creation or copy them from another attribute (see 5). If you do not know
the parameterization and only want to set the cut you can do this by using the patch ID as
parameter coordinates (exptended to 2 components), for example. The mesh will not get
a valid parameterization but the cut will be extracted from the attribute discontinuities
(edges with di�erent attribute values on either side). After this you can parameterize the
patches with OpenGI, as cutting and parameterization are seperated since version 2.0.
When specifying the cut yourself and using OpenGI for parameterization, also consider
using the GI_PARAM_CORNER_SUBSET if you know the corners of the parameterization
boundaries (e.g. when using a quadrilateral patchi�cation).

4.2. Cutting Algorithms

The actual mesh cutting is realized by calling

13

4. Mesh Cutting

void giCut ()

and the algorithm used for cutting can be selected with

void g iCutterParameter i (GIenum pname , GIint param)

with pname being GI_CUTTER and param being one of the following methods:

GI_INITIAL_GIM: This algorithm works on meshes of arbitrary genus and with a vari-
able number of boundaries. It actually represents the initial cut computed by Gu et
al. in their original GIM parameterization algorithm [GGH02], therefore its name.
When the mesh consists of more than one unconnected parts the parameterization
fails with a GI_INVALID_CUT error, as a connected cut cannot be computed. On a
genus-0-mesh with one boundary the resulting cut is actually that boundary.

GI_CATMULL_CLARK_SUBDIVISION: This method realizes standard Catmull-Clark
subdivision presented in [CC78] and creates a single patch for every quadrilateral
after the �rst iteration, resulting in a completely quadrilateral patchi�cation. The
overall number of iterations can be controlled by calling giCutterParameteri with
GI_SUBDIVISION_ITERATIONS. Every patch already comes with a valid uniform pa-
rameterization, such that a geometry image of size (2i+1)×(2i+1) exactly captures
the patch's geometry after i + 1 iterations of Catmull-Clark subdivision. Unlike
other cutting algorithms the subdivision process changes the geometry of the mesh,
but it is completely restored when deleting (or overwriting) the cut. But note, that
although the vertex positions are adapted to realize a smooth surface, every other
attribute is just interpolated linearly, meaning the avegare of the incident vertices
for edges and faces respectively. You should also keep an eye on the memory com-
sumption, as the internal data for a patch takes about 350-450 bytes and 3 patches
are created for every triangle of the input mesh. Figure 4.1 shows the results of
subdividing an octahedron.

Figure 4.1.: Catmull-Clark subdivision of an octahedron after 1, 2 and 3 iterations. Cut
rendered in red.

14

5. Parameterization

5.1. General Parameterization Issues

After the mesh has been cut (and possibly patchi�ed) it can be parameterized. Param-
eterization will usually be the most time consuming task during the whole process of
geometry image creation. It could be useful if you have a little background in parame-
terization but it is not necessary for using the parameterization functionality of OpenGI.
Nevertheless the SIGGRAPH course by Hormann et al.[HLS07] is a good starting point.
Parameterization can be invoked on the current bound mesh by calling

void g iParameter i ze ()

This function can be used to parameterize a single patch individually or all patches
of the mesh at once, by selecting the whole mesh. If this function was successful, the
mesh will have valid per vertex parameter coordinates. OpenGI only supports the unit
square as parameter domain, as we mainly want to create rectangular geometry images.
There is no possibility to make parameterizations with an arbitrary border. The actual
parameterization process can be controlled in various ways by the functions

void giParameter izerParameterb (GIenum pname , GIboolean param)
void g iParameter i ze rParameter i (GIenum pname , GIint param)
void g iParameter i ze rParameter f (GIenum pname , GIfloat param)

During the parameterization there may be certain vertices that need to be mapped
to exact texels, to prevent small gaps in the reconstructed geometry images. To de�ne
what an exact texel is, the resolution of the parameter domain needs to be set. This can
be achieved by calling giParameterizerParameteri with GI_PARAM_RESOLUTION. This
defaults to 33 and should be set to the desired resolution of the geometry (position) image.
When intending to sample or render the geometry image in di�erent resolutions, e.g.
for doing LOD, the parameter resolution should be set to the lowest intended geometry
image resolution. In this case you should consider using resolutions of the form (2m+1)×
(2m +1), so that all texels of the lowest resolution are also part of all higher resolutions.
When taking exactly mapped vertices into account you should also think about using the
software mode for sampling (see A for more information). Note, that too low a param
resolution may a�ect the quality of the boundary parameterization, when there are many
cut intersections.
After a successful parameterization you can also retrieve the active patchs's topological

sideband (see [GGH02]). This is a list of integers representing the cut paths along the
boundary of the parameter domain, starting at the lower left corner and going counter-
clockwise. For each cut path an ID is stored and the path's length in texels. If the
mesh has only one patch, the ID identi�es the cut path. So, if a cut path ID is in

15

5. Parameterization

the list twice, the path is in the internal of the mesh and traversed twice in di�erent
directions. This way you can identify the regions on the geometry image border that are
adjacent in the reconstructed mesh. If the mesh has multiple patches, the ID identi�es
the neighbouring patch along this path, with −1 for no patch. The sum of the cut path
lengths is allways equal to 4(r− 1), with r being the resolution of the parameter domain
during parameterization and not the resolution of the actual geometry image (there need
not yet be any image), although often these values are the same. The length of this list
can be obtained by calling giGetMeshiv with GI_TOPOLOGICAL_SIDEBAND_LENGTH and
the list itself with GI_TOPOLOGICAL_SIDEBAND. Note, that, when the length is n, the
array storing the list should at least have the length 2n, as with each cut path id its
length in texels is stored.
Internally the parameterization algorithms result in solving systems of linear equations.

These systems are by default solved by CG in the symmetric case and BiCGStab in
the unsymmetric case. Although, due to preconditioning, it should never happen that
BiCGStab crashes for normal meshes, it could possibly happen some day, resulting in
a GI_NUMERICAL_ERROR. In this case the advanced user can set the solving algorithm to
the slower GMRES(25) by calling giParameterizerParameteri with GI_UNSYMMETRIC_-

SOLVER and setting it to GI_GMRES instead of GI_BICGSTAB.

5.2. Parameterization Algorithms

After the cut has been parameterized we come to the core of the whole work, the compu-
tation of UV-coordinates for the interior vertices based on the values on the cut. For the
actual parameterization you have the choice between di�erent algorithms, set by calling
giParameterizerParameteri with GI_PARAMETERIZER:

GI_FROM_ATTRIB: This copies the parameter coordinates from another attribute.
The attribute channel to use can be selected with giParameterizerParameteri

and a pname of GI_PARAM_SOURCE_ATTRIB. But some restrictions are imposed on
this attribute: The mesh has to have data for it and it has to have at least two
components. Of course it cannot be the attribute bound to GI_PARAM_ATTRIB or
GI_PARAM_STRETCH_ATTRIB. As this discards the current cut and patchi�cation and
recomputes it completely, it can only be used on the whole mesh and not on in-
dividual patches, but it can also be used on meshes that do not have a valid cut.
It computes a cut via the attribute discontinuities and these have to meet the
same requirements stated in the previous chapter. Only if its parameter coordi-
nates build a bijective mapping onto the unit square will a patch be considered as
parameterized, but you can still use it for creating the cut.

GI_TUTTE_BARYCENTRIC: This is the simplest convex-combination parameteriza-
tion, developed by Tutte [Tut63]. It uses uniform edge weights that do not adapt
to the mesh's geometry, so it produces quite unsmooth results.

GI_SHAPE_PRESERVING: This parameterization was presented by Michael Floater

in [Flo97] and produces much smoother results than the previous one.

16

5. Parameterization

GI_DISCRETE_HARMONIC: This parameterization from Eck et al.[EDD+95], uses
Discrete Harmonic coordinates. Like the previous one it is conformal (angle-
preserving).

GI_MEAN_VALUE: This other parameterization by Floater, using Mean Value coordi-
nates [Flo03], looks quite the same as the other angle-preserving parameterizations.
It should at least produce results as good as that from the Shape Preserving pa-
rameterization, but the weight computation should be faster, although not very
signi�cantly.

GI_DISCRETE_AUTHALIC: This parameterization from Desbrun et al.[DMA02] uses
Wachspress coordinates. In theory it should account for the area distortion but in
practice it looks like the other conformal parameterizations.

GI_INTRINSIC: The Intrinsic parameterization by Desbrun et al.[DMA02] is the gen-
eralization of the Discrete Harmonic and Discrete Authalic parameterizations, try-
ing to account for angle and area distortion. It is actually a mix of both meth-
ods. The mixing weights of the two parameterizations can be set by calling
giParameterizerParameterf with the constants GI_CONFORMAL_WEIGHT and GI_-

AUTHALIC_WEIGHT, which both default to 1.

GI_STRETCH_MINIMIZING: When you want to create geometry images you should
actually use this parameterization or the next, as these try to minimize param-
eterization stretch and not only angle distortion. This is a very simple but also
fast stretch minimizing parameterization, developed by Yoshizawa et al.[YBS04].
It starts with a normal convex-combination map and iteratively changes the linear
system based on the per vertex stretch values. Call giParameterizerParameteri
with GI_INITIAL_PARAMETERIZATION and the constants 3 to 6 of this list to set
the starting parameterization, although this does not make much di�erence. The
stretch metric to use is set with the same function, using GI_STRETCH_METRIC and
one of the constants from table 5.1, defaulting to GI_RMS_GEOMETRIC_STRETCH.
Finally you can adjust how the stretch values in�uence the linear system per adap-
tion step. When setting GI_STRETCH_WEIGHT with giParameterizerParameterf

to a value lower than 1, the parameterization will take longer but might produce
better results. This weight defaults to 1 and has to lie in [0,1]. When using GI_-

COMBINED_STRETCH as stretch metric, you can control how much the area distortion
in�uences the stretch energy by setting GI_AREA_WEIGHT, which defaults to 1 and
should be larger than 0.

GI_GIM: This �nally is the original GIM algorithm developed by Gu et al.[GGH02].
It works by iteratively improving the cut and computing stretch minimizing pa-
rameterizations in each iteration. As it internally uses the previous algorithm, all
parameters set for this will also take e�ect here. As it changes the cut, it cannot
be used on a mesh consisting of more than one patch.

17

5. Parameterization

Figure 5.1.: UV lines for head model parameterized by Uniform (a), Discrete Harmonic
(b), Mean Value (c), Discrete Authalic (d), Stretch Minimizing (e) and GIM
parameterization (f). The green curve is the parameterization border (cut).

18

5. Parameterization

Note, that the Discrete Harmonic and Discrete Authalic (and therefore also the In-
trinsic) parameterization may produce negative weights on certain extreme triangle con-
stellations. This would result in incorrect triangle �ips in parameter space. Furthermore
can the Discrete Authalic parameterization produce a linear system that may not be
solvable. But with the Shape Preserving or Mean Value parameterization you are always
on the safe side. Most times you will be well advised with just using the default values
for parameterization, but for more complex meshes it could be a good idea to try the
GIM parameterization or change some other parameters. In �gure 5.1 you can see the
head model parameterized by di�erent algorithms.

5.3. Parameterization Stretch

The stretch is a measure for the quality of the parameterization as it gives information
about the stretch (of what kind ever) of a reconstruction when sampling the parameter
domain uniformly. There exist various metrics to measure the stretch, which have dif-
ferent goals. The metrics that can be used for stretch minimization are listed in table
5.1. The stretch of a mesh's or patch's parameterization can be retrieved by calling
giGetMeshfv with one of these constants. But note, that the value is unde�ned if called
on the whole mesh and not all patches have a valid parameterization.

constant description

GI_MAX_GEOMETRIC_STRETCH L∞ stretch as de�ned in [SSGH01]

GI_RMS_GEOMETRIC_STRETCH L2 stretch as de�ned in [SSGH01]

GI_COMBINED_STRETCH combined stretch metric introduced in [DMK03]

Table 5.1.: Metrics for measuring parameterization stretch

The parameterization stretch can also be measured locally, as a scalar vertex attribute
(guess, it is the one bound to the GI_PARAM_STRETCH_ATTRIB semantic), but in order to
work with this attribute, the per-vertex stretch values have to be computed by calling

void giComputeParamStretch (GIenum metr ic)

which computes the values with the speci�ed metric for the currently bound mesh or only
its active patch. There can only be stretch values for one metric at a time and calling this
function with a di�erent metric overwrites the previous values. Moreover the values are
only computed if neccessary. If the stretch values are still valid or have been computed
during parameterization, there is no need to compute them again. The currently active
metric can be queried with giGetMeshiv and a pname of GI_PARAM_STRETCH_METRIC,
returning 0 if there are no stretch values or di�erent ones for di�erent patches (if called for
the whole mesh). Finally the mesh's or patch's minimal and maximal per-vertex stretch
values can be retrieved by calling giGetMeshfv with either GI_MIN_PARAM_STRETCH or
GI_MAX_PARAM_STRETCH.

19

5. Parameterization

5.4. Callback Functions

As parameterization can be quite time consuming depending on the mesh size and the
algorithm used, OpenGI provides callback hooks for you to get feedback during param-
eterization. These are set by

void g iParamete r i z e rCa l lback (GIenum which ,
GIparamcb fn , GIvoid ∗data)

specifying the function to call and optional user data, where GIparamcb is just a

typedef GIboolean (GICALLBACK ∗GIparamcb) (GIvoid ∗) .

The which argument can be one of the following:

GI_PARAM_STARTED: This is called once per call to giParameterize before start-
ing the parameterization.

GI_PARAM_CHANGED: This is called everytime a single patch's parameterization
changes and therefore once per patch for the simple parameterizations and once
per iteration for the stretch minimization and GIM parameterization. When it is
called, the mesh's active patch is set to the currently parameterized patch.

GI_PARAM_FINISHED: This is called once per call to giParameterize after all of
the patches (or only the active one) have been parameterized.

The callback's return value tells OpenGI if it should continue parameterizing. This way
you can abort the parameterization by returning GI_FALSE. When aborting, the current
(aborted) patch's parameter coordinates are unde�ned. If parameterizing the whole
mesh, all patches parameterized before keep their new parameterization and all patches
still to parameterize keep their previous parameterization, if any.
In these callback routines you can then just render the current cut or the current mesh

using the parameter coordinates as texture coordinates to visualize the parameterization,
or fetch the current stretch value, or visualize the per-vertex stretch, or anything else.
But this can only be static, as you have to proceed with the parameterization. A more
advanced technique used by my GUI geometry image creation program is to use multiple
threads. When starting parameterization, giParameterize is called in a new thread and
the callbacks just tell the main thread, which has control over OpenGL, to rebuild the
mesh's display list. The main thread then draws the mesh, using giGLDrawMesh with the
parameter coordinates as texture coordinates for use with a checkerboard texture, into
a display list. After this display list has been created, the parameterization thread may
proceed and the callback function looks if the user has tried to cancel the parameterization
since the last callback and proceeds or aborts the parameterization. This way the user
can always interactively examine the current parameterization iteration while the next
one is being computed. The display list is necessary because OpenGI is everything else
than thread save. you should not draw a mesh, that is currently changed by another
function.

20

6. Images and Sampling

6.1. Image Management

Image objects are used to represent the attribute images into which a mesh's attributes
are sampled. They generally behave like mesh objects. They are represented in client
space by IDs, which are created by calling

GIuint giGenImage ()
void giGenImages (GIsizei n , GIuint ∗ images)

and deleted by calling

void giDeleteImage (GIuint image)
void g iDe le te Images (GIsizei n , const GIuint ∗ images)

Like meshes an image is bound as the active one by calling

void giBindImage (GIuint image)

and the currently bound image can be retrieved by calling giGetIntegerv with GI_-

IMAGE_BINDING.
Images do not contain any data, instead they are just pointers to the actual image

data in user memory. This way unnecessary copying operations can be avoided. You
just tell OpenGI what client data is used for the active image and this data is written
to when sampling into this image. You can set the data for an image by calling one of
these functions:

void giImageExternalData (GIsizei width , GIsizei height ,
GIsizei components ,
GIenum type , GIvoid ∗data)

void giImageGLTextureData (GIsizei width , GIsizei height ,
GIsizei components ,
GIenum type , GIuint t ex tur e)

void giImageGLBufferData (GIsizei width , GIsizei height ,
GIsizei components ,
GIenum type , GIuint bu f f e r)

Width, height and components specify the image's width, height (≥ 2) and number of
components (in [1, 4]) respectively. The type argument gives the type of the individual
image components, which can be one of the constants from table 6.1. The constants have
the same values as the corresponding OpenGL constants, making communication easier.
The �rst function tells OpenGI that the image's data is located in the user-controlled
memory pointed to by data. The user is responsible for allocating and destroying this
data. By the second function you tell OpenGI that the data for the image is located in

21

6. Images and Sampling

constant description

GI_UNSIGNED_BYTE 8-bit unsigned bytes

GI_HALF_FLOAT 16-bit �oating point numbers (1.5.11)

GI_FLOAT 32-bit �oating point numbers (1.8.24)

Table 6.1.: Image types

the user-controlled OpenGL texture object speci�ed by texture. Again it is the user's
responsibility to create and delete this texture, OpenGI only works on it. Finally by the
third function the image's data can lie in a user-controlled OpenGL bu�er object. It is
important to know that these three functions exclude each other, meaning an image's data
is either located in user RAM or in an OpenGL texture or in an OpenGL bu�er, but
not in two or three locations at the same time as this would create data synchronization
problems (but you can still manage multiple copies and synchronize them yourself). So
a call to giImage...Data overwrites a previous call to any giImage...Data function.
By this data redirection method the image can easily be suited to your needs without

ine�cient data copies. For example when working with the image on the CPU you let
its data reside in RAM. When using it as textures (e.g. normal mapping) or working
with it on the GPU its data can reside in a texture object. Or when you want to render
it as vertex array its data can reside in a bu�er object. And all this can be achieved
without copying the data yourself and with the sampling suited to the particular storage
mode. For example when using OpenGL accelerated sampling with framebu�er objects
supported and you want to use the image as texture there is no need for the image to
ever leave the graphics card.
Since version 2.1 you can specify a sub-rectangle of the whole image by calling

void giSubImage (GIuint x , GIuint y , GIsizei width , GIsizei he ight)

with (x,y) being the o�set of a width×height sub-image of the currently bound image.
After this call every algorithm working on the image, like sampling or geometry image
rendering will only use this sub-image. This way you can for example pack geome-
try images of multiple patches into a single large image. The default sub-image is the
whole image, that can be selected by calling the function with all zeros. Calling any of
giImage...Data will reset the selected sub-image to this default. When trying to select
a sub-image that does not �t into the overall image bounds or that is smaller than 2×2,
a GI_INVALID_VALUE error is generated.
Nearly every property of an image can be retrieved by calling

void giGetImageiv (GIenum pname , GIint ∗param)

specifying the property to query and the address to store its value at. Table 6.2 lists
the possible values for pname. Note that querying GI_GL_IMAGE_TEXTURE or GI_GL_-

IMAGE_BUFFER returns 0 for an image stored in RAM data. The storage mode of the
image is either GI_EXTERNAL_DATA, GI_GL_TEXTURE_DATA, GI_GL_BUFFER_DATA or GI_-
NO_IMAGE_DATA for a new image, not yet having giImage...Data called for. The image's

22

6. Images and Sampling

constant description

GI_IMAGE_WIDTH width of the image

GI_IMAGE_HEIGHT height of the image

GI_IMAGE_COMPONENTS number of components per pixel

GI_IMAGE_TYPE type of image components

GI_GL_IMAGE_TEXTURE OpenGL texture object if any

GI_GL_IMAGE_BUFFER OpenGL bu�er object if any

GI_IMAGE_STORAGE storage mode

GI_SUBIMAGE_X x-o�set of selected sub-image

GI_SUBIMAGE_Y y-o�set of selected sub-image

GI_SUBIMAGE_WIDTH width of selected sub-image

GI_SUBIMAGE_HEIGHT height of selected sub-image

GI_SUBIMAGE sub-image region as 4 integers

Table 6.2.: Image properties

RAM data address, which is NULL if the image is not stored in RAM, can be queried by
means of giGetPointerv with the argument GI_IMAGE_DATA.

6.2. Sampling

To sample into an image, it has to be bound to a speci�c attribute channel by calling

void giAttr ibImage (GIuint a t t r i b , GIuint image) .

This uses image as target when sampling the attribute speci�ed by attrib.
Finally, after specifying and binding the necessary images, the currently bound mesh's

attributes, or rather those of the mesh's active patch, can be sampled into the corre-
sponding attribute images by calling

void giSample ()

This function samples all vertex attributes of the currently active patch that have a
valid image bound to their channel. Bind image 0 to disable an attribute. If there is no
active patch selected in the current mesh, a GI_INVALID_OPERATION error is thrown and
if the patch has not been parameterized or the parameterization boundary is not the unit
square � which can only happen if you speci�ed the parameter coordinates yourself or
took them from an attribute � a GI_INVALID_PARAMETERIZATION error will be thrown.
If any of the bound attribute images has no data associated to it, a GI_INVALID_-

OPERATION error will be generated and this attribute will not be sampled. However,
the operation will proceed sampling the other attributes. After sampling is �nished the
number and combination of successfully sampled attributes can be queried by calling
giGetIntegerv with either GI_SAMPLED_ATTRIB_COUNT or GI_SAMPLED_ATTRIBS, which
has the ith bit set if the ith attribute has been sampled successfully.

23

6. Images and Sampling

The actual sampling can either be done in software using a software rasterizer or
hardware accelerated by using OpenGL for rasterization. Both samplers have their ad-
vantages and disadvantages. Most times you will use the software sampler because of its
higher precision but in certain cases you may trade o� precision for the higher speed of
hardware accelerated sampling. The sampler to use can be speci�ed by calling

void giSamplerParameter i (GIenum pname , GIint param)

with pname being GI_SAMPLER and param being one of the following values:

GI_SAMPLER_SOFTWARE: The software sampler is the default and also the recom-
mended sampler as it is the most exact sampling method. It may be slower than
the hardware sampler, but it pro�ts from mutlithreading, if supported and enabled.
Since version 2.0 the software sampler supports resampling of textures and is thus
equal to the OpenGL sampler regarding the supported features.

GI_SAMPLER_OPENGL: This sampler uses OpenGL for rasterizing triangles and can
therefore be faster, depending on your graphics hardware, especially when the image
data is stored in VRAM. The sampler works with any hardware supporting at least
OpenGL 1.1, but can take advantage of newer hardware capabilities, as GLSL,
FBOs, etc. The use of GLSL and FBOs can be enabled or disabled by calling

void giSamplerParameterb (GIenum pname , GIboolean param)

with GI_SAMPLER_USE_SHADER and GI_SAMPLER_USE_RENDER_TO_TEXTURE. These
are enabled by default, but are only hints, as these features also have to be sup-
ported by the OpenGL context. If not using FBOs, you can only sample to images
of type GI_UNSIGNED_BYTE. Also think of the OpenGL requirements that depend
on the image con�guration, as e.g. �oating point textures, half-precision �oating
point values, or two component textures. It is not reccommended to use this sam-
pler as it does not provide the precision needed in many cases (see A for the cases
when hardware sampling may su�ce).

Note that it is no problem to call giSamplemore than once or even sample one attribute
with the software sampler and another one with hardware sampling but for performance
reasons it is recommended to sample all attributes in one call and for precision reasons it
is recommended to sample all attributes with the same sampler as the results of di�erent
sampling modes may vary slightly and di�erent attributes may not �t onto each other
exactly, although these artifacts may not be noticable.
When sampling an attribute the per-vertex values are �rst expanded to 4 components

by (0, 0, 0, 1), if smaller. Then these values are transformed by a user speci�ed 4×4-
matrix that can be set by calling

void giAttr ibSamplerParameter fv (GIuint a t t r i b , GIenum pname ,
const GIfloat ∗params)

with pname being GI_SAMPLING_TRANSFORM and params being the matrix to use in
column-major format, defaulting to the identity matrix. It can be used to �t the
mesh into the 0-1-cube when sampling vertex postions into a ubyte-image, for example.

24

6. Images and Sampling

After expansion and transformation the per-vertex attribute values are interpolated
across the triangles and rasterized into the parameter domain. The speci�c sampling
mode to use for an attribute can be speci�ed with

void g iAttr ibSamplerParameter i (GIuint a t t r i b , GIenum pname ,
GIint param)

and a pname of GI_SAMPLING_MODE. The following modes are supported:

GI_SAMPLE_DEFAULT: As the name suggests this is the default sampling mode.
The attribute is just interpolated across the triangle.

GI_SAMPLE_NORMALIZED: The attribute is renormalized after interpolation. If
the type of the associated image is GI_UNSIGNED_BYTE, the values are also linearly
transformed from [−1, 1] to [0, 1] (or exactly [0, 255]). The attribute is always
normalized as a 3D vector and the fourth component set to 1.

GI_SAMPLE_TEXTURED: The attribute is used as a texture coordinate to resam-
ple a texture. The actual OpenGL texture object to resample is speci�ed by
giAttribSamplerParameteri with pname being GI_GL_SAMPLE_TEXTURE and its
dimension with GI_TEXTURE_DIMENSION. The texture dimension has to lie between
1 and 4, with 4 meaning a cube map texture.

25

7. OpenGL Utility Functions

7.1. General OpenGL Issues

OpenGI is designed for easy use with OpenGL. All of the render functions explained
in this chapter assume an appropriately initialized OpenGL context to be active. As
OpenGI may create OpenGL context local data as e.g. shader programs or VBOs, the
same GL context should be active when calling functions using OpenGL during the whole
lifetime of the OpenGI context. Before another OpenGL context is made current or when
the GL context is destroyed before the GI context you should call

void giGLCleanUp ()

otherwise the results are unde�ned next time calling an OpenGI function that makes use
of OpenGL. When the GI context is destroyed before the GL context it is not necessary
to call this function. To be sure this list contains all functions that use OpenGL:

• giSample (the software sampler may also use some OpenGL)

• giGLDraw[Mesh/Cut/GIM]

• giGLCleanUp

The non-rendering methods are designed to preserve every OpenGL state they modify.
Furthermore they also mostly set every state they need explicitly. So these functions
may be called at every point in your application, even in the middle of your rendering
routine, although this is quite unlikely.

7.2. Rendering Meshes

The currently bound mesh (or only its active patch) can be rendered with

void giGLDrawMesh ()

which renders the mesh's faces as triangles immediately (using glBegin/glEnd). This
routine is mainly intended for debugging purposes, e.g. when you want feedback during
parameterization, as it is quite ine�cient to convert the whole mesh into a vertex/index
array representation every time the parameterization changes. Because of its intensive
use of conditional blocks it could be a good idea to put this function into an OpenGL
display list when you render the mesh more than once, e.g. every frame.
Similarly to the mesh itself you can also render its current cut by calling

void giGLDrawCut ()

26

7. OpenGL Utility Functions

constant description

GI_NONE do not render attribute

GI_GL_VERTEX render as glVertex

GI_GL_NORMAL render as glNormal

GI_GL_COLOR render as glColor

GI_GL_SECONDARY_COLOR render as glSecondaryColor

GI_GL_FOG_COORD render as glFogCoord

GI_GL_EVAL_COORD render as glEvalCoord

GI_GL_TEXTURE_COORD render as gl[Multi]TexCoord

GI_GL_VERTEX_ATTRIB render as glVertexAttrib

Table 7.1.: OpenGL render semantics for attribute channels

which draws the mesh's cut immediately as a line strip (actually a line loop). These
rendering functions do not modify any OpenGL state and require the usual state assumed
when calling glBegin/glEnd. Both functions only draw the active patch's triangles and
cut edges, unless the whole mesh is selected.
The mapping from OpenGI attribute channels to OpenGL vertex attributes for ren-

dering is established by calling

void giGLAttribRenderParameteri (GIuint a t t r i b , GIenum pname ,
GIint param)

for a speci�c attribute, with pname being GI_GL_RENDER_SEMANTIC and one of the con-
stants from table 7.1 as param. Of course the used attributes also have to be supported
by the OpenGL context. When using the GI_GL_TEXTURE_COORD or GI_GL_VERTEX_-

ATTRIB semantics, the texture unit or attrib location to use can be set by means of
giGLAttribRenderParameteri with a pname of GI_GL_RENDER_CHANNEL. If multitextur-
ing is not supported, only the attribute that is bound to texture unit 0 is rendered. When
more than one OpenGI attribute channel is bound to a single OpenGL vertex attribute,
only one will be rendered. The same holds for glVertexAttrib(0, ...) and glVertex,
which are actually aliases.
This way the mesh can be rendered fully multitextured, the current parameterization

can be visualized, an attribute can be transmitted as vertex attrib for use in a shader,
or the stretch of the parameterization can be visualized using a 1D texture as color map.
When doing so, note that the param stretch values are highly mesh and parameterization
dependent and usually larger than 1, so it could be a good idea to transform them to the
[0,1]-range by using the texture matrix and its minimum and maximum values.

7.3. Rendering Geometry Images

OpenGI can also render the currently bound attribute images as a colored, normal
mapped and fully multitextured triangular mesh. This rendering currently only sup-
ports the �rst light source and only directional or point light without attenuation. When

27

7. OpenGL Utility Functions

normals are rendered, colors are ignored. The textures are applied by modulation. Two
sided materials and lighting are supported.
The geometry image is rendered by calling

void giGLDrawGIM()

This function draws the attributes bound to the GI_GL_VERTEX, GI_GL_NORMAL and GI_-

GL_COLOR semantics and the �rst four GI_GL_TEXTURE_COORD units, using the images
bound to these attribute channels, if any. It requires the active OpenGL context to
support GLSL and the rendering shaders to be compiled successfully, which they should
normally do, given GLSL support, otherwise a GI_UNSUPPORTED_OPERATION error will
occur. There are some more OpenGL requirements depending on the image con�guration
which are quite self-evident, e.g. �oating point textures, NPOT textures, half-precision
vertex data, etc. If any error occurs for the attribute bound to the GI_GL_VERTEX render
semantic, the rendering will fail. For errors caused by other attributes the rendering will
continue just ignoring the attribute image that caused the error.
The rendering can be controlled with the functions

void giGLRenderParameterb (GIenum pname , GIboolean param)
void giGLRenderParameteri (GIenum pname , GIint param)

By calling giGLRenderParameteri with either GI_RENDER_RESOLUTION_U or with GI_-

RENDER_RESOLUTION_V you can specify a lower resolution for the geometry image than
its size. This way the geometry data is subsampled and discrete Levels of Detail can
be implemented. But some restrictions have to be taken care of: when the geometry
image size is n × n and the render resolution m × m then n − 1 has to be an integer
multiple of m − 1, e.g. 10 and 4 or 513 and 257. Usually you will use image sizes and
resolutions of the form (2m +1)× (2m +1), which su�ce this restriction (and have some
other advantages). By setting a resolution to 0, which is the default for both dimensions,
the geometry will always be sampled at the highest resolution (that of the image) in the
corresponding dimension. When rendering multiple resolutions of a geometry image, see
A for the steps to take for getting a watertight reconstruction.
By default the domains of the texture coordinates for accessing the images are indented

by half a texel resulting in the images being sampled at texel centers at least at the
border. This is recommended for images created by OpenGI as giSample maps the
parameterization border to exact texels and OpenGL returns the exact texel value when
�ltering at the texel center. Sometimes you may want to override this default behavior,
for example when you have an external texture that needs texture coordinates in the
range [0,1]. Just call giGLAttribRenderParameteri with a pname of GI_TEXTURE_-

COORD_DOMAIN for the required attributes, setting it to GI_UNIT_SQUARE instead of GI_-
HALF_TEXEL_INDENT.
The following features can be enabled with giGLRenderParameterb:

GI_USE_VERTEX_TEXTURE: This will enable/disable the use of vertex texture
fetches (VTF), which might be faster when the position data is stored in a texture
object. But you should evaluate it yourself for your speci�c hardware. It is turned
o� by default.

28

7. OpenGL Utility Functions

GI_USE_GEOMETRY_SHADER: This will enable/disable the use of the geometry
shader (GS). When using geometry shaders the quads of the regular quad mesh
resulting from a geometry image are splitted along their shorter diagonal to produce
the two triangles. This should look better for highly stretched quads, compared to
the normally used triangle strips which always split along the same diagonal. Figure
7.1 shows the di�erence, especially at sharper creases, as the nose or the chin. Note
that this rendered triangular mesh is not regular anymore at the triangle level, but
it is of course still regular in the sense of the quads de�ning the triangle pairs. Also,
when using GS and VTF together there is no index data needed anymore, which
might reduce the memory consumption and increase the rendering throughput.

Note that these �ags are only hints to the renderer, as these techniques have to be
supported by the OpenGL context, of course.
If VBOs are supported the rendering performance might pro�t from caching texture

coordinate and index data, which depend only on the geometry image size and can
therefore be used more than once. The size of this render cache, consisting of a texCoord
and an index cache, can be set by calling giGLRenderParameteri with GI_RENDER_-

CACHE_SIZE. This caching can speed up rendering signi�cantly as texCoord and index
data can be stored in VRAM and reused for many render calls. But the size of the
cache should not be too small as this could result in reallocating data every frame when
rendering too much di�erently sized geometry images per frame. As an orientation: one
texCoord cache entry for one image size and one index cache entry for one combination of
image size and rendering resolution. So for example when rendering only one geometry
image (or only images with the same size) every frame, a cache size of 1 should be
su�cient. But when rendering the geometry data in 3 di�erent resolutions every frame
the cache size should be at least 3 because of the index data. But when switching the
resolution for all geometry images only a few times the cache does not need to be so
large. Note that for the render cache only the size of the geometry image matters and
not that of other attribute images. The default cache size is 8 and setting it to 0 disables
render caching.
As textures are considered highly object dependent and this is a render function, it

does not save the current texture bindings before changing them, but as shaders are used,
it does not enable any texture units. When rendering n di�erent attributes (including
positions), the texture bindings (for the GL_TEXTURE_2D-target) of the �rst n-1 texture
units are changed, the �rst n if vertex texturing is used.

29

7. OpenGL Utility Functions

Figure 7.1.: The left images show regular triangle strip rendering and the right ones are
rendered using the geometry shader, splitting each quad along its shorter
diagonal. This reduces artifacts at sharper creases, like the nose or chin.

30

A. Programming Tips

When using OpenGI there are some best practices regarding the performance and, more
important, the precision of the operations, that might not be known to someone not
too deep into the �eld of Geometry Images. These tips might have already been stated
elsewhere but are drawn together here for reference purposes. Take these advices from
someone who really knows the internals of OpenGI.

A.1. Precision Issues

Whenever you use GI_INITIAL_GIM for cutting or GI_GIM for parameterizing, it can (or
must) happen, that the cut cuts into the mesh, meaning there are cut edges not lying
on the mesh boundary. These edges are mapped to two di�erent border segments of the
geometry image, as the mesh is ripped open along the cut. For the rendered geometry
image not to show any gaps along this cut, both border segments have to contain the
exact same values. To achieve this, some vertices have to be mapped to exact texels
during parameterization, namely the vertices incident to only one or more than two
cut edges. For this to happen, the resolution of the parameter domain has to be set
appropriately.

• Before parameterizing set GI_PARAM_RESOLUTION to the size of the geometry (po-
sition) image when sampling.

You might want to sample or render the geometry image in di�erent resolutions to do
LOD or whatever and do not want to change the parameterization. Then, what should
be the resolution of the parameter domain?

• Use resolutions where each grid contains all the texels of the next lower resolution
and border texels are also border texels in the next higher resolution. A good choice
are resolutions of the form (2m + 1)× (2m + 1). These should also be used for the
other images, although precision deviations in these might not be noticeable. (This
does not mean the other images should have the same size as the geometry image,
they only should su�ce the power-of-two-plus-1 condition).

• Set GI_PARAM_RESOLUTION to the lowest resolution you want to sample or render
the geometry image with.

After the needed vertices have been parameterized to exact texels, they also have to
be sampled exactly. At the moment this can only be achieved by the software sampler.

• Before sampling set GI_SAMPLER to GI_SAMPLER_SOFTWARE or leave it as is, as this
is the default sampling mode.

31

A. Programming Tips

Of course these restrictions also apply if you have used GI_EXACT_MAPPING_SUBSET

during mesh creation or if the mesh has multiple patches. If you have a genus-0 mesh with
only one boundary and there are no other vertices that you want to be mapped exactly,
then you may want to use the hardware sampler, because of its higher performance,
especially for images stored in VRAM.

A.2. Performance Tips

Here are some performance rules you should have in mind when sampling the mesh.
These are anything else than strict and may not have too much impact on the overall
performance, but when they can be applied, they should. Do not underestimate the cost
of copying a large image between the graphics card and the system memory.

• Try to sample all needed attributes in one call to giSample.

• The software sampler is faster if more images have the same size.

• Set the storage mode of the image to �t its intended use, e.g. bu�ers to use for
vertex array rendering or pixel operations, textures to use for texturing or GPU
processing and system memory to use for CPU processing.

• If sampling in software mode, and the image is needed as a texture and as a RAM
copy, store it in RAM and copy it into the texture after sampling, as the software
sampler works in system memory anyway.

• If sampling hardware-accelerated, and the image is needed as a texture and as a
RAM copy, store it in the texture and read it into RAM after sampling, as the
hardware sampler works on the graphics card anyway.

When you want to render the images as triangular meshes using giGLDrawGIM you
should have in mind, that

• Rendering with giGLDrawGIM works fastest if the geometry image is stored in a
bu�er object and the other images in texture objects.

32

B. Usage Example

At this point some sourcecode from the gim example is presented, demonstrating the use
of OpenGI in a simple Geometry Image creator/viewer. I will only show the OpenGI
related parts in the sequence they are executed. The whole project can be found together
with the source distribution of OpenGI.
First we need some global variables storing our OpenGI and OpenGL objects.

unsigned int uiMesh ; // mesh o b j e c t
unsigned int uiGIM [3] ; // image o b j e c t s
unsigned int uiPattern ; // checkerboard t e x t u r e
void GICALLBACK errorCB (unsigned int e r ror , void ∗data) ;

In the main function we �rst create an OpenGI context and set an error callback
function. This error callback just prints the error string to the standard output, which
would OpenGI do by default, when compiled with verbosity enabled.

int main (int argc , char ∗argv []) {
. . .
GIcontext pContext = giCreateContext () ;
giMakeCurrent (pContext) ;
g iEr ro rCa l lback (errorCB , NULL) ;

Next, our mesh has to be created from a set of arrays, which are actually read from
a �le, but this is unimportant here. First we will tell OpenGI where it can �nd some
special attributes. We will use attribute 0 for vertex positions (default anyway) and 2
for the parameter coordinates (and 1 for the normals, but that does not care OpenGI).
Then we set and enable the arrays for our attributes. We only want to set positions and
normals, params are created during parameterization.

g iBindAttr ib (GI_POSITION_ATTRIB, 0) ;
g iBindAttr ib (GI_PARAM_ATTRIB, 2) ;
g iAt t r i bPo in t e r (0 , 3 , GI_FALSE, 0 , pVer t i c e s) ;
g iAt t r i bPo in t e r (1 , 3 , GI_TRUE, 0 , pNormals) ;
g iEnableAttr ibArray (0) ;
g iEnableAttr ibArray (1) ;

Now we can create our mesh from these arrays with an appropriate index array.

uiMesh = giGenMesh () ;
giBindMesh (uiMesh) ;
giIndexedMesh (0 , iNumVertices−1, iNumIndices , p Ind i c e s) ;

First we have to cut the mesh into a topological disc.

g iCutterParameter i (GI_CUTTER, GI_INITIAL_GIM) ;
giCut () ;

33

B. Usage Example

When this is done, we parameterize the mesh. The parameters set here (except for the
resolution) are actually the default ones but are set here for the sake of completeness.

g iParameter i ze rParameter i (GI_PARAMETERIZER, GI_STRETCH_MINIMIZING) ;
g iParameter i ze rParameter i (GI_INITIAL_PARAMETERIZATION, GI_MEAN_VALUE) ;
g iParameter i ze rParameter f (GI_STRETCH_WEIGHT, 1 .0 f) ;
g iParameter i ze rParameter i (GI_PARAM_RESOLUTION, r e s) ;
g iParameter i ze () ;

When the mesh is parameterized we can sample its attributes into images. But �rst we
have to create the storage needed for the images. All images will be stored in textures,
so we need to create three textures, one for the geometry and the normal data each and
a third one, which is not sampled into, containing a checkerboard pattern for visualizing
the parameterization.

glGenTextures (2 , uiTex) ;
glBindTexture (GL_TEXTURE_2D, uiTex [0]) ;
g lTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) ;
glTexImage2D (GL_TEXTURE_2D, 0 , GL_RGBA32F, res , res , 0 ,

GL_RGBA, GL_FLOAT, NULL) ;

int iNRes = (r e s&1) ? (res <<1)−1 : (res <<1);
glBindTexture (GL_TEXTURE_2D, uiTex [1]) ;
g lTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) ;
glTexImage2D (GL_TEXTURE_2D, 0 , GL_RGB, iNRes , iNRes , 0 ,

GL_RGB, GL_UNSIGNED_BYTE, NULL) ;

glGenTextures (1 , &uiPattern) ;
glBindTexture (GL_TEXTURE_2D, u iPattern) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) ;
glTexImage2D (GL_TEXTURE_2D, 0 , GL_LUMINANCE, 256 , 256 , 0 ,

GL_LUMINANCE, GL_UNSIGNED_BYTE, checkerboard) ;

Now we can create the images for the three attributes and tell them that they are
stored in OpenGL textures.

giGenImages (3 , gim) ;
giBindImage (gim [0]) ;
giImageGLTextureData (res , res , 4 , GI_FLOAT, uiTex [0]) ;
giBindImage (gim [1]) ;
giImageGLTextureData (iNRes , iNRes , 3 , GI_UNSIGNED_BYTE, uiTex [1]) ;
giBindImage (gim [2]) ;
giImageGLTextureData (256 , 256 , 1 , GI_UNSIGNED_BYTE, u iPattern) ;

We bind the images to the attribute we want to get sampled into them. We only want
to sample the positions and normals (0 and 1) as image 2 already contains useful data.
Then we tell the sampler to renormalize attribute 1 after interpolation, as it contains the
normals.

34

B. Usage Example

giAttr ibImage (0 , gim [0]) ;
g iAttr ibImage (1 , gim [1]) ;
g iAttr ibImage (2 , 0) ;
g iSamplerParameter i (GI_SAMPLER, GI_SAMPLER_SOFTWARE) ;
g iAttr ibSamplerParameter i (0 , GI_SAMPLING_MODE, GI_SAMPLE_DEFAULT) ;
g iAttr ibSamplerParameter i (1 , GI_SAMPLING_MODE, GI_SAMPLE_NORMALIZED) ;
giSample () ;

Now we can look at our display function, that is executed every frame. With
iDrawMesh in {0,1} we can decide if we draw the mesh or the geometry image and
with iParam in {0,1} if we want to visualize the parameterization. We will use attribute
0 as positions, 1 as normals and 2 as texture coordinates when rendering the mesh and
its image as texture when rendering the geometry image (but only if we want to visualize
the parameter coordinates). Note that the mesh and image bindings are not neccessary
here, as they should still be bound. Also in practice it would be a good idea to build the
mesh rendering into a display list.

void d i sp l ay () {
. . .
giGLAttribRenderParameteri (0 , GI_GL_RENDER_SEMANTIC, GI_GL_VERTEX) ;
giGLAttribRenderParameteri (1 , GI_GL_RENDER_SEMANTIC, GI_GL_NORMAL) ;
giGLAttribRenderParameteri (2 , GI_GL_RENDER_SEMANTIC,

iParam ? GI_GL_TEXTURE_COORD : GI_NONE) ;
giGLAttribRenderParameteri (2 , GI_GL_RENDER_CHANNEL, 0) ;
i f (iDrawMesh) {

i f (iParam) {
glBindTexture (GL_TEXTURE_2D, u iPattern) ;
g lEnable (GL_TEXTURE_2D) ;

}
giBindMesh (uiMesh) ;
giGLDrawMesh () ;

} else {
giAttr ibImage (0 , uiGIM [0]) ;
g iAttr ibImage (1 , uiGIM [1]) ;
i f (iParam) {

giAttr ibImage (2 , uiGIM [2]) ;
giGLAttribRenderParameteri (2 ,

GI_TEXTURE_COORD_DOMAIN, GI_UNIT_SQUARE) ;
}
giGLDrawGIM () ;

}
. . .

}

35

C. Porting from Version 1.X

Since some parts of the API have changed signi�cantly in version 2.0, this chapter sum-
marizes the major changes and presents adaption strategies for older applications. These
should be ported, as not only the API has changed since version 1.2 but also many inter-
nals have been improved. For some code samples it is also a good idea to compare the
usage examples of both versions with each other.
The most signi�cant change, e�ecting nearly all aspects of OpenGI, is the new generic

attribute system, replacing the old �xed-semantic attributes. So the setting of arrays
has become simpler, with only giAttribPointer instead of a di�erent function for every
attribute. But on the other hand you have to manage the attribute semantics yourself,
the OpenGI semantics with giBindAttrib as well as your own, like normals or texture
coordinates. This means, you also have to set up the correct render semantics before
calling giDraw[Mesh/Cut/GIM] and the correct sampling mode. Moreover there is now
per-attribute state and corresponding getters and setters. The mesh retrieval API has
been simpli�ed, too, but now you have to allocate the target arrays yourself.
A feature that has been removed are the mesh modi�cation functions, like giFlipMesh

or giTransformMesh, as these were more of a debugging purpose and do not make much
sense with the generic attributes. To make these modi�cations to the mesh data you
will have to retrieve its data and create the mesh again, or you make these modi�cations
before creating the mesh. If you just want to transform the mesh before sampling, you
can use the new per-attribute sampling matrix (but remember to transform the normals
appropriately when transforming the vertex positions). This matrix is also needed when
�tting the geometry to [0, 1] or normalizing the param stretch for sampling into a ubyte-
image, which is not done automatically anymore.
Fortunately you do not have to bother with the new patch functionality if the mesh

consists of one patch only. Many cutting algorithms have been removed. As GI_SINGLE_-
BOUNDARY gives the same results as GI_INITIAL_GIM on the allowed meshes, it is not
needed and a relict of old times, when the more advaced cutter was not implemented yet.
As the cut is now decoupled from the parameterization, GI_REPARAMETERIZE_ONLY is not
needed anymore and as parameterizing the cut makes no real performance di�erence,
GI_USE_EXISTING is dropped, too.
There is now only one image bound for modi�cation by giBindImage and not one

per attribute. The attribute images are bound separately by giAttribImage and this
binding is used to determine the attributes selected for sampling and rendering, instead
of a bit�eld. Another good news is, you can now use the software sampler for texture
resampling and do not have to switch to hardware mode for this. But on the other hand
the hardware sampler has become much more accurate (but still cannot beat software
mode).

36

D. State Variables

Tables D.1 to D.3 list all state values that can be retrieved by calling giGetBooleanv,
giGetIntegerv or giGetFloatv. Additionally tables D.4 to D.6 list the per-attribute
global state, that can be retrieved with GetAttrib[bif]v. For the sake of compactness
the leading GI_ has been left o� in all constants.

constant default description

MULTITHREADING TRUE multithreading enabled

EXACT_MAPPING_SUBSET FALSE exact mapping subset enabled

PARAM_CORNER_SUBSET FALSE parameterization corner subset enabled

EXACT_MAPPING_SUBSET_SORTED FALSE sorted �ag for exact mapping subset

PARAM_CORNER_SUBSET_SORTED FALSE sorted �ag for param corner subset

SAMPLER_USE_SHADER TRUE use GLSL in hardware sampling

SAMPLER_USE_RENDER_TO_-

TEXTURE

TRUE use FBOs in hardware sampling

GL_USE_VERTEX_TEXTURE FALSE use vertex texture in GIM rendering

GL_USE_GEOMETRY_SHADER FALSE use geometry shader in GIM rendering

Table D.1.: Boolean state variables

constant default description

AUTHALIC_WEIGHT 1.0 authalic weight for Intrinsic parameterization

CONFORMAL_WEIGHT 1.0 conformal weight for Intrinsic parameterization

STRETCH_WEIGHT 1.0 stretch weight for Stretch Minimization

AREA_WEIGHT 1.0 area weight for combined stretch metric

Table D.2.: Floating point state variables

37

D. State Variables

constant default description

VERSION (2,1,X) OpenGI version as array of size 3

MAX_ATTRIBS 16 available attribute channels

MESH_BINDING 0 currently bound mesh

IMAGE_BINDING 0 currently bound image

EXACT_MAPPING_SUBSET_COUNT 0 number of elements in exact mapping
subset

PARAM_CORNER_SUBSET_COUNT 0 number of elements in parameterization
corner subset

POSITION_ATTRIB 0 attribute used for vertex positions

PARAM_ATTRIB 0 attribute used for parameter coordi-
nates

PARAM_STRETCH_ATTRIB 0 attribute used for parameterization
stretch

CUTTER INITIAL_-

GIM

cutting algorithm

SUBDIVISION_ITERATIONS 1 number of iterations for subdivision

PARAMETERIZER STRETCH_-

MINIMIZING

parameterization algorithm

INITIAL_PARAMETERIZATION MEAN_-

VALUE

starting parameterization for Stretch
Minimization

STRETCH_METRIC RMS_-

GEOMETRIC_-

STRETCH

stretch metric for Stretch Minimization

PARAM_RESOLUTION 33 resolution of parameter domain

UNSYMMETRIC_SOLVER BICGSTAB solver for unsymmetric systems

PARAM_SOURCE_ATTRIB 0 attribute to source param coords from

SAMPLER SAMPLER_-

SOFTWARE

sampling mode

SAMPLED_ATTRIB_COUNT 0 number of sampled attributes

SAMPLED_ATTRIBS 0 bitwise combination of successfully sam-
pled attributes

RENDER_RESOLUTION_U 0 U-resolution for GIM rendering

RENDER_RESOLUTION_V 0 V-resolution for GIM rendering

RENDER_CACHE_SIZE 8 size of cache for GIM rendering

Table D.3.: Integer state variables

38

D. State Variables

constant default description

ATTRIB_ARRAY_ENABLED FALSE attribute array enabled

ATTRIB_ARRAY_NORMALIZED FALSE normalized �ag of attribute array

Table D.4.: Boolean per-attribute state variables

constant default description

ATTRIB_ARRAY_SIZE 0 size of attribute array

ATTRIB_ARRAY_STRIDE 0 stride value of attribute array

ATTRIB_ARRAY_SEMANTIC - semantic attribute is bound to

ATTRIB_IMAGE 0 image bound to attribute channel

SAMPLING_MODE SAMPLE_-

DEFAULT

attribute sampling mode

TEXTURE_DIMENSION 2 dimension of texture to resample

GL_SAMPLE_TEXTURE 0 texture object to resample

GL_RENDER_SEMANTIC - OpenGL attribute used for rendering

GL_RENDER_CHANNEL 0 texture unit or vertex attrib location
used for rendering

TEXTURE_COORD_DOMAIN HALF_TEXEL_-

INDENT

texture coord domain for GIM rendering

Table D.5.: Integer per-attribute state variables

constant default description

SAMPLING_TRANSFORM


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 4×4 transformation matrix to be applied
during sampling (column-major)

Table D.6.: Floating point per-attribute state variables

39

E. GNU Free Documentation License

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite

330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document �free� in the sense of freedom: to assure everyone the e�ective freedom
to copy and redistribute it, with or without modifying it, either commercially or non
commercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modi�cations made
by others.
This License is a kind of �copyleft�, which means that derivative works of the document

must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, be-

cause free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and de�nitions

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The �Document�, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as �you�. You
accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.
A �Modi�ed Version� of the Document means any work containing the Document or a

portion of it, either copied verbatim, or with modi�cations and/or translated into another
language.

40

E. GNU Free Documentation License

A �Secondary Section� is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position regarding them.
The �Invariant Sections� are certain Secondary Sections whose titles are designated, as

being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not �t the above de�nition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The �Cover Texts� are certain short passages of text that are listed, as Front-Cover

Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A �Transparent� copy of the Document means a machine-readable copy, represented in

a format whose speci�cation is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pix-
els) generic paint programs or (for drawings) some widely available drawing editor, and
that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
�le format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modi�cation by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not �Transparent�
is called �Opaque�.
Examples of suitable formats for Transparent copies include plain ASCII without

markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modi�cation. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.
The �Title Page� means, for a printed book, the title page itself, plus such following

pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, �Title Page�
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.
A section �Entitled XYZ� means a named subunit of the Document whose title either

is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a speci�c section name mentioned below, such
as �Acknowledgments�, �Dedications�, �Endorsements�, or �History�.) To �Preserve the
Title� of such a section when you modify the Document means that it remains a section

41

E. GNU Free Documentation License

�Entitled XYZ� according to this de�nition.
The Document may include Warranty Disclaimers next to the notice which states that

this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no e�ect on
the meaning of this License.

Verbatim copying

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section
3.
You may also lend copies, under the same conditions stated above, and you may

publicly display copies.

Copying in quantity

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to �t legibly, you should put

the �rst ones listed (as many as �t reasonably) on the actual cover, and continue the rest
onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,

you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time

42

E. GNU Free Documentation License

you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well

before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

Modi�cations

You may copy and distribute a Modi�ed Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modi�ed Version under precisely
this License, with the Modi�ed Version �lling the role of the Document, thus licensing
distribution and modi�cation of the Modi�ed Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi�ed Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modi�cations in the Modi�ed Version, together with at least �ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than �ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modi�ed Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modi�cations adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modi�ed Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled �History�, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modi�ed Version as given
on the Title Page. If there is no section Entitled �History� in the Document, create
one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modi�ed Version as stated in the
previous sentence.

43

E. GNU Free Documentation License

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
�History� section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled �Acknowledgments� or �Dedications�, Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled �Endorsements�. Such a section may not be included in
the Modi�ed Version.

N. Do not retitle any existing section to be Entitled �Endorsements� or to con�ict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modi�ed Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modi�ed Version's license notice. These titles
must be distinct from any other section titles.
You may add a section Entitled �Endorsements�, provided it contains nothing but

endorsements of your Modi�ed Version by various parties�for example, statements of
peer review or that the text has been approved by an organization as the authoritative
de�nition of a standard.
You may add a passage of up to �ve words as a Front-Cover Text, and a passage of up

to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modi�ed
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.
The author(s) and publisher(s) of the Document do not by this License give permission

to use their names for publicity for or to assert or imply endorsement of any Modi�ed
Version.

44

E. GNU Free Documentation License

Combining documents

You may combine the Document with other documents released under this License, under
the terms de�ned in section 4 above for modi�ed versions, provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodi�ed,
and list them all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical

Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but di�erent contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled �History� in the various

original documents, forming one section Entitled �History�; likewise combine any sections
Entitled �Acknowledgments�, and any sections Entitled �Dedications�. You must delete
all sections Entitled �Endorsements�.

Collections of documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually

under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,

then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

45

E. GNU Free Documentation License

Translation

Translation is considered a kind of modi�cation, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled �Acknowledgments�, �Dedications�, or �His-

tory�, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or dis-
tribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

Future revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may di�er in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document

speci�es that a particular numbered version of this License �or any later version� applies
to it, you have the option of following the terms and conditions either of that speci�ed
version or of any later version that has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify a version number of this License, you
may choose any version ever published (not as a draft) by the Free Software Foundation.

Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under

46

http://www.gnu.org/copyleft/

E. GNU Free Documentation License

the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sec-
tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled �GNU Free Documentation License�.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
�with...Texts.� line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend re-

leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

47

Bibliography

[CC78] Edwin Catmull and Jim Clark. Recursively generated b-spline surfaces on
arbitrary topological meshes. Computer-Aided Design, 10(6):350�355, 1978.

[DMA02] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic parameterizations
of surface meshes. Computer Graphics Forum, 21(3):209�218, 2002.

[DMK03] Patrick Degener, Jan Meseth, and Reinhard Klein. An adaptable suface pa-
rameterization method. In Proceedings of the 12th International Meshing

Roundtable (IMR 2003), pages 201�213. Sandia National Laboratories, 2003.

[EDD+95] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Louns-
bery, and Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In
Proceedings of SIGGRAPH 1995, pages 173�182. ACM Press, 1995.

[Flo97] Michael Floater. Parametrization and smooth approximation of surface tri-
angulations. Computer Aided Geometric Design, 14(3):231�250, 1997.

[Flo03] Michael Floater. Mean value coordinates. Computer Aided Geometric Design,
20(1):19�27, 2003.

[GGH02] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. In
Proceedings of SIGGRAPH 2002, pages 355�361. ACM Press, 2002.

[HLS07] Kai Hormann, Bruno Lévy, and Alla She�er. Mesh parameterization: Theory
and practice. In ACM SIGGRAPH Course Notes, 2007.

[SSGH01] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture
mapping progressive meshes. In Proceedings of SIGGRAPH 2001, pages 409�
416. ACM Press, 2001.

[Tut63] W. T. Tutte. How to draw a graph. In Proceedings of the London Mathematical

Society, pages 743�767, 1963.

[YBS04] Shin Yoshizawa, Alexander Belyaev, and Hans-Peter Seidel. A fast and simple
stretch-minimizing mesh parameterization. In Proceedings of the 2004 Inter-

national Conference on Shape Modeling and Applications (SMI '04), pages
200�208. IEEE Computer Society, 2004.

48

Function Index

A

giAttribImage .23
giAttribPointer 8, 11
giAttribSamplerParameterfv 24
giAttribSamplerParameteri 25

B

giBindAttrib . 8
giBindImage . 21
giBindMesh . 7

C

giComputeParamStretch 19
giCopyMesh . 9
giCreateContext . 4
giCut . 13
giCutterParameteri 14

D

giDeleteImage . 21
giDeleteImages .21
giDeleteMesh . 7
giDeleteMeshes . 7
giDestroyContext . 4
giDisable . 4, 5
giDisableAttribArray 9, 11

E

giEnable . 4, 5, 10
giEnableAttribArray 9, 11
giErrorCallback . 5
giErrorString . 5

G

giGenImage .21
giGenImages . 21
giGenMesh .7
giGenMeshes .7
giGetAttribbv . 8, 37
giGetAttribfv . 8, 37
giGetAttribiv . 8, 37
giGetAttribPointerv9
giGetBooleanv 4, 37
giGetCurrent . 4
giGetEnumValue . 4
giGetError . 5
giGetFloatv . 4, 37
giGetImageiv . 22
giGetIndexedMesh 11
giGetIntegerv4, 7, 21, 23, 37
giGetMeshAttribbv 11
giGetMeshAttribiv 11
giGetMeshbv . 11
giGetMeshfv . 11, 19
giGetMeshiv 11, 13, 16, 19
giGetNonIndexedMesh 11
giGetPointerv 10, 23
giGLAttribRenderParameteri27, 28
giGLCleanUp . 26
giGLDrawCut . 26
giGLDrawGIM 28, 32
giGLDrawMesh . 26
giGLRenderParameterb 28
giGLRenderParameteri 28, 29

I

giImageExternalData21, 22
giImageGLBu�erData 21, 22

49

Function Index

giImageGLTextureData 21, 22
giIndexedMesh 9, 10
giIsEnabled . 4

M

giMakeCurrent . 4
giMeshActivePatch 13

N

giNonIndexedMesh 9, 10

P

giParameterize 15, 20
giParameterizerCallback 20
giParameterizerParameterb 15
giParameterizerParameterf 15, 17
giParameterizerParameteri 15�17

S

giSample23, 24, 28, 32
giSamplerParameterb 24
giSamplerParameteri 24
giSubImage . 22

V

giVertexSubset .10

50

Enumeration Index

A

GI_AABB_MAX . 12
GI_AABB_MIN . 12
GI_ACTIVE_PATCH 12, 13
GI_ALL_PATCHES 12, 13
GI_AREA_WEIGHT 17, 37
GI_ATTRIB_ARRAY_ENABLED 39
GI_ATTRIB_ARRAY_NORMALIZED 39
GI_ATTRIB_ARRAY_SEMANTIC 39
GI_ATTRIB_ARRAY_SIZE 39
GI_ATTRIB_ARRAY_STRIDE 39
GI_ATTRIB_IMAGE 39
GI_ATTRIB_NORMALIZED 12
GI_ATTRIB_SEMANTIC 12
GI_ATTRIB_SIZE . 12
GI_AUTHALIC_WEIGHT17, 37

B

GI_BICGSTAB . 16, 38
GI_BYTE . 3

C

GI_CATMULL_CLARK_SUBDIVISION . . . 14
GI_COMBINED_STRETCH 17, 19
GI_CONFORMAL_WEIGHT 17, 37
GI_CUTTER . 14, 38

D

GI_DISCRETE_AUTHALIC 17
GI_DISCRETE_HARMONIC 17
GI_DOUBLE . 3

E

GI_EDGE_COUNT . 12

GI_EXACT_MAPPING_SUBSET . . 10, 32, 37
GI_EXACT_MAPPING_SUBSET_COUNT . . 38
GI_EXACT_MAPPING_SUBSET_SORTED . 37
GI_EXTERNAL_DATA22

F

GI_FACE_COUNT . 12
GI_FALSE . 3
GI_FLOAT . 3, 22
GI_FROM_ATTRIB . 16

G

GI_GIM . 17, 31
GI_GL_BUFFER_DATA 22
GI_GL_COLOR . 27, 28
GI_GL_EVAL_COORD27
GI_GL_FOG_COORD 27
GI_GL_IMAGE_BUFFER22, 23
GI_GL_IMAGE_TEXTURE 22, 23
GI_GL_NORMAL27, 28
GI_GL_RENDER_CHANNEL 27, 39
GI_GL_RENDER_SEMANTIC 27, 39
GI_GL_SAMPLE_TEXTURE 25, 39
GI_GL_SECONDARY_COLOR 27
GI_GL_TEXTURE_COORD 27, 28
GI_GL_TEXTURE_DATA 22
GI_GL_USE_GEOMETRY_SHADER 37
GI_GL_USE_VERTEX_TEXTURE 37
GI_GL_VERTEX27, 28
GI_GL_VERTEX_ATTRIB 27
GI_GMRES . 16

H

GI_HALF_FLOAT3, 22
GI_HALF_TEXEL_INDENT 28, 39

51

Enumeration Index

GI_HAS_ATTRIB . 12
GI_HAS_CUT .12
GI_HAS_PARAMS . 12

I

GI_IMAGE_BINDING 21, 38
GI_IMAGE_COMPONENTS 23
GI_IMAGE_DATA . 23
GI_IMAGE_HEIGHT 23
GI_IMAGE_STORAGE23
GI_IMAGE_TYPE . 23
GI_IMAGE_WIDTH . 23
GI_INITIAL_GIM14, 31, 38
GI_INITIAL_PARAMETERIZATION . 17, 38
GI_INT .3
GI_INTRINSIC . 17
GI_INVALID_CUT 5, 14
GI_INVALID_ENUM . 5
GI_INVALID_ID 5, 7, 9
GI_INVALID_MESH 5, 9
GI_INVALID_OPERATION 5, 7, 11, 23
GI_INVALID_PARAMETERIZATION . . 5, 23
GI_INVALID_VALUE 5, 22

M

GI_MAX_ATTRIBS 7, 8, 38
GI_MAX_GEOMETRIC_STRETCH 19
GI_MAX_PARAM_STRETCH 12, 19
GI_MEAN_VALUE 17, 38
GI_MESH_BINDING 7, 38
GI_MIN_PARAM_STRETCH 12, 19
GI_MULTITHREADING 5, 37

N

GI_NO_ERROR .5
GI_NO_IMAGE_DATA22
GI_NONE .12, 27
GI_NUMERICAL_ERROR 5, 16

P

GI_PARAM_ATTRIB 8, 9, 12, 16, 38
GI_PARAM_CHANGED20

GI_PARAM_CORNER_SUBSET . . . 10, 13, 37
GI_PARAM_CORNER_SUBSET_COUNT . . . 38
GI_PARAM_CORNER_SUBSET_SORTED . . 37
GI_PARAM_FINISHED 20
GI_PARAM_RESOLUTION . . . 12, 15, 31, 38
GI_PARAM_SOURCE_ATTRIB 16, 38
GI_PARAM_STARTED20
GI_PARAM_STRETCH_ATTRIB 8, 9, 12, 16,

19, 38
GI_PARAM_STRETCH_METRIC12, 19
GI_PARAMETERIZER 16, 38
GI_PATCH_COUNT 12, 13
GI_POSITION_ATTRIB 8, 9, 12, 38

R

GI_RADIUS . 12
GI_RENDER_CACHE_SIZE 29, 38
GI_RENDER_RESOLUTION_U 28, 38
GI_RENDER_RESOLUTION_V 28, 38
GI_RMS_GEOMETRIC_STRETCH . 17, 19, 38

S

GI_SAMPLE_DEFAULT 25, 39
GI_SAMPLE_NORMALIZED 25
GI_SAMPLE_TEXTURED 25
GI_SAMPLED_ATTRIB_COUNT23, 38
GI_SAMPLED_ATTRIBS23, 38
GI_SAMPLER 24, 31, 38
GI_SAMPLER_OPENGL 24
GI_SAMPLER_SOFTWARE 24, 31, 38
GI_SAMPLER_USE_RENDER_TO_TEXTURE 24,

37
GI_SAMPLER_USE_SHADER 24, 37
GI_SAMPLING_MODE 25, 39
GI_SAMPLING_TRANSFORM 24, 39
GI_SHAPE_PRESERVING 16
GI_SHORT . 3
GI_STRETCH_METRIC 17, 38
GI_STRETCH_MINIMIZING 17, 38
GI_STRETCH_WEIGHT 17, 37
GI_SUBDIVISION_ITERATIONS . . . 14, 38
GI_SUBIMAGE . 23
GI_SUBIMAGE_HEIGHT 23

52

Enumeration Index

GI_SUBIMAGE_WIDTH 23
GI_SUBIMAGE_X . 23
GI_SUBIMAGE_Y . 23

T

GI_TEXTURE_COORD_DOMAIN28, 39
GI_TEXTURE_DIMENSION 25, 39
GI_TOPOLOGICAL_SIDEBAND12, 16
GI_TOPOLOGICAL_SIDEBAND_LENGTH 12,

16
GI_TRUE . 3
GI_TUTTE_BARYCENTRIC 16

U

GI_UNIT_SQUARE . 28
GI_UNSIGNED_BYTE 3, 22, 24, 25
GI_UNSIGNED_INT . 3
GI_UNSIGNED_SHORT3
GI_UNSUPPORTED_OPERATION5, 28
GI_UNSYMMETRIC_SOLVER 16, 38
GI_USE_GEOMETRY_SHADER 29
GI_USE_VERTEX_TEXTURE 28

V

GI_VERSION .38
GI_VERTEX_COUNT 12

53

	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 OpenGI Overview
	1.2 General API Design

	2 Basic Functionality
	2.1 Context Management
	2.2 State Management
	2.3 Error Handling
	2.4 Multithreading

	3 Triangular Meshes
	3.1 Basic Mesh Management
	3.2 Vertex Attributes
	3.3 Mesh Creation
	3.4 Vertex Subsets
	3.5 Mesh Retrieval

	4 Mesh Cutting
	4.1 Patch Handling
	4.2 Cutting Algorithms

	5 Parameterization
	5.1 General Parameterization Issues
	5.2 Parameterization Algorithms
	5.3 Parameterization Stretch
	5.4 Callback Functions

	6 Images and Sampling
	6.1 Image Management
	6.2 Sampling

	7 OpenGL Utility Functions
	7.1 General OpenGL Issues
	7.2 Rendering Meshes
	7.3 Rendering Geometry Images

	A Programming Tips
	A.1 Precision Issues
	A.2 Performance Tips

	B Usage Example
	C Porting from Version 1.X
	D State Variables
	E GNU Free Documentation License
	Bibliography
	Function Index
	Enumeration Index

